The range of a∈R for which the function f(x)=(4a−3)(x+loge5)+2(a−7)cot(x2)sin2(x2),x≠2nπ,n∈N has critical points, is:
A
[−43,2]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
[1,∞)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(−3,1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(−∞,−1]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A[−43,2] f(x)=(4a−3)(x+ln5)+2(a−7)⎛⎜
⎜⎝cosx2sinx2.sin2x2⎞⎟
⎟⎠f(x)=(4a−3)(x+ln5)+(a−7)sinx⇒f′(x)=(4a−3)+(a−7)cosx=0⇒cosx=−(4a−3)a−7⇒−1≤−(4−3)a−7<1(∵1≤cosx≤1)⇒−1<4a−3a−7≤1⇒4a−3a−7−1≤0and4a−3a−7+1>0⇒a∈[−43,7)anda∈(−∞,2)∪(7,∞)⇒−43≤a<2