The correct option is D {−1,0,1}
We will consider the following cases
1) x≥π+2:
Then [x−π]≥2;
hence 1[x−π]≤12, i.e, [1[x−π]]=0
2) π+1≤x<π+2
Then 1≤x−π<2. Therefore [x−π]=1 and 1[x−π]=1, i.e, [1[x−π]]=1
3) π≤x<π+1
Since [x−π]=0, the function is not defined in the region.
4)π−1≤x<π
Then −1≤x−π<0. Therefore [x−π]=−1 and 1[x−π]=−1, i.e, [1[x−π]]=−1
5) x<π−1
Then [x−π]≤−2;
hence 0>1[x−π]≥−12, i.e, [1[x−π]]=−1
Therefore the only possible values the function can attend is {−1,0,1}