The correct option is B (−∞,0)∪[19,∞)
Let y=f(x)
∴y=1−x2+4x+5⇒yx2−(4y)x−5y+1=0
Here, y≠0 because in quadratic equation coefficient of x2 can not be 0.
For x∈R−{−1,5}
D≥0⇒16y2−4y(1−5y)≥0⇒16y2−4y+20y2≥0⇒9y2−y≥0⇒y(9y−1)≥0⇒y∈(−∞,0]∪[19,∞)
But y≠0
⇒y∈(−∞,0)∪[19,∞)