wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The range of \(f(x)=\dfrac1{-x^2+4x+5}\),\(x\in \mathbb R-\{-1,5\}\) is

Open in App
Solution

Let \(y=f(x)\)
\(\therefore y=\dfrac1{-x^2+4x+5}\\
\Rightarrow yx^2-(4y)x-5y+1=0\)
Here, \(y\neq0\) because in quadratic equation coefficient of \(x^2\) can not be \(0.\)

For \(x\in \mathbb R-\{-1,5\}\)
\(D\ge0\\
\Rightarrow 16y^2-4y(1-5y)\ge0\\
\Rightarrow 16y^2-4y+20y^2\ge0\\
\Rightarrow 9y^2-y\ge0\\
\Rightarrow y(9y-1)\ge0\\
\Rightarrow y\in (-\infty,0]\cup\left[\dfrac19,\infty\right)\)
But $y\ne0$
\(\Rightarrow y\in(-\infty,0)\cup\left[\dfrac19,\infty\right)\)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon