The correct option is C (0,1]
x2+ex2+1>0 ∀ x∈R
So, domain of f is R
loge(x2+ex2+1)
=loge(x2+1+e−1x2+1)
=loge(1+e−1x2+1)
Now, 0≤x2<∞
⇒1≤x2+1<∞
⇒0<1x2+1≤1
⇒0<e−1x2+1≤e−1
⇒1<1+e−1x2+1≤e
Since, logex is strictly increasing function.
∴loge1<loge(1+e−1x2+1)≤logee
⇒0<loge(1+e−1x2+1)≤1
Hence, R(f)=(0,1]