The range of the function f(x)=7−xPx−3 is
f(x)=(7−x)!/(7−x−(x−3))!=(7−x)!/(10–2x)!
since permutation is defined only for natural numbers
thus,
now, from definition of nPr,n>=r
7−x>=3−x
x<=5
therefore, domain=4,5
x=4
f(x)=3!/2!=3
x=5
f(x)=2!/0!=2
=>rangeoff=3,2