The correct option is D R−(−17,13)
Let g(x)=3sinx+4cosx−2
We know that,
−√32+42≤3sinx+4cosx≤√32+42
⇒−5≤3sinx+4cosx≤5
⇒−7≤3sinx+4cosx−2≤3
⇒g(x)∈[−7,3]
∴1g(x)∈(−∞,−17] for g(x)∈[−7,0)
and 1g(x)∈[13,∞) for g(x)∈(0,3]
Therefore, the range of f(x)=R−(−17,13)