The correct option is A (−∞,116]∪(2,∞)
f(x)=8x2+40x+284x2+20x+13
f(x) can be resolved as
f(x)=2+24x2+20x+13
Let y=2+24x2+20x+13
⇒y−2=24x2+20x+13
⇒4x2+20x+13=2y−2
⇒4x2+20x+25−12=2y−2
⇒(2x+5)2=2y−2+12
⇒(2x+5)2=12y−22y−2
⇒(2x+5)=±√12y−22y−2
Since x∈R,
12y−22y−2≥0
For y>2 the inequation always holds true.
When y<2
12y−22≤0
⇒y≤116
Hence, the range of the given function is (−∞,116]∪(2,∞)