The correct option is C (−1,0]
f(x)=ex−e|x|ex+e|x|
ex+e|x|≠0 for any real value of x
Hence, domain of f is R
|x|={x,x≥0−x,x<0
∴f(x)=⎧⎪⎨⎪⎩0,x≥0ex−e−xex+e−x,x<0
Let y=ex−e−xex+e−x
=e2x−1e2x+1
=1−2e2x+1
Now, −∞<x<0
⇒−∞<2x<0
⇒0<e2x<1
⇒1<e2x+1<2
⇒12<1e2x+1<1
⇒1<2e2x+1<2
⇒−2<−2e2x+1<−1
⇒−1<1−2e2x+1<0
For x≥0, f(x)=0
For x<0, y∈(−1,0)
∴ Range of f is (−1,0]