The range of the function f(x)=x2āxx2+2x is
R−{−12,1}
=x2−xx2+2x
Range of f Let f(x) = y, then
f(x) = y
⇒x2−xx2+2x=y⇒x2−x=yx2+2x⇒x2−yx2=2xy+xx2(1−y)=x(2y+1)x=2y+11−y
Clearly x will take real values, if 2y+11−y≥0
2y+1y−1≥0
2y+1>0 or y−1<0
y>−12 or y<1
−12<y<1
Hence, range (f) =[−12,1](−12,1)