The correct option is C (0,1]
We know that, if −1≤x≤1, then
0≤x2n≤x2, n∈N
So,
0≤sin2nx≤sin2x⇒0≤cos2nx≤cos2x
⇒0≤sin2nx+cos2nx≤sin2x+cos2x⇒0≤sin2nx+cos2nx≤1⇒0≤(sinnx)2+(cosnx)2≤1
For the expression to be minimum,
(sinnx)2+(cosnx)2=0
which is possible only when,
sinx=0, cosx=0
Which is not possible.
Hence, (sinnx)2+(cosnx)2∈(0,1]