The correct option is B (−∞,0)∪[45,∞)
y=1|x−1|−x2
⇒x2−|x−1|+1y=0, y≠0
Case :1 When x≥1
⇒x2−x+(1y+1)=0
⇒Δ≥0
⇒1−4(1y+1)≥0
⇒−4y−3≥0
⇒4+3yy≤0, y≠0
⇒y∈[−43,0) ...(1)
Case :2 When x<1
⇒x2+x+(1y−1)=0
⇒Δ≥0
⇒1−4(1y−1)≥0
⇒−4y+5≥0
⇒5y−4y≥0, y≠0
⇒y∈(−∞,0)∪[45,∞) ...(2)
From (1) and (2)
⇒y∈(−∞,0)∪[45,∞)