The correct option is C (−∞,12116]
Given :y=−4x2+13x−3
By comparing with the standard form y=ax2+bx+c
We have a=−4,b=13,c=−3.
Here, a<0⇒ it is a downward opening parabola and we know the vertex of downward opening parabola i.e. (−b2a,−D4a).
Therefore the range of the quadratic expression is (−∞,−D4a].
∴D=b2−4ac=132−4.(−4).(−3)
⇒D=121
Hence, −D4a=−1214.(−4)=12116
∴Range∈(−∞,12116]