The correct option is
A (−∞,−2)∪(2,∞)Equation of the given circle can be written as
x2+y2−(1+√2a2)x−(1−√2a2)y=0.Since y+x=0 bisects two chord of this circle, mid-points of the chords must be the form (α,−α).
Equation of the chord having (α,−α) as mid-point is T=S1 i.e., αx+(−α)y−(1+√2a4)(x+α)−(1−√2a4)(y+α)
=α2+α2−(1+√2a2)α−(1−√2a2)(−α)
⇒4αx−4αy−(1+√2a)x−(1−√2a)y=8α2−(1+√2a)α+(1−√2a)α.
This chord will pass through the point (1+√2a2,1−√2a2) if
4α(1+√2a2)−4α(1−√2a2)−(1+√2a)(1+√2a)2−(1−√2a)(1−√2a)2
=8α2−2√2aα
⇒2α[1+√2a−1+√2a]−12[(1+√2a)2+(1−√2a)2]=8α2−2√2aα
⇒4√2aα−12[2(1)2+2(√2a)2]=8α2−2√2aα
[∵(a+b)2+(a−b)2=2a2+2b2]
⇒8α2−6√2aα+1+2a2=0.
This quadratic equation will have two distinct roots if
(6√2a)2−4(8)(1+2a2)>0.
⇒72a2−32(1+2a2)>0⇒9a2−4−8a2>0
⇒a2−4>0⇒(a−2)(a+2)>0
⇒a∈(−∞,−2)∪(2,∞).