The correct option is C (−√2,−1)
Given equation of the circle,
S:x2+y2=4
As point (α,α) lies inside the circle, then
S1<0⇒α2+α2−4<0⇒α2−2<0⇒α∈(−√2,√2) …(1)
Also, centre of circle (0,0) and given point (α,α) lie on opposite sides of 3x+4y+7=0, hence
(3⋅0+4⋅0+7)⋅(3α+4α+7)<0
⇒7α+7<0⇒α∈(−∞,−1) …(2)
Hence, final range of α is (1)∩(2)
⇒α∈(−√2,−1)