The range of values of λ for which the circles x2+y2=4 and x2+y2−4λx+9=0 have two common tangents is
C1=(0,0),r1=2
C2=(2λ,0),r2=√4λ2−9
They must have 2 common tangents
⟹|r1–r2|<C1C2<r1+r2
C1C2<r1+r2
2λ<2+√4λ2−9
⟹4λ2+4–8λ<4λ2−9
⟹8λ>13⟹λ>138............(1).
C1C2>|r1−r2|
C1C22>(r1–r2)2
4λ>4+4λ2–9–4√4λ2−9
4√4λ2−9>−5
4λ2–9>2516
4λ2=16916
λ2–(138)2>0
⟹(λ+138)(λ−138)>0
⟹λ>−138 and λ>138 or λ<−138 and λ<138.............(2).
Combining (1) and (2) we get,
λ>138 or λ<−138