The range of values of x satisfying the inequality (x−2)(x−4)(x−7)(x+2)(x+4)(x+7)>1is
A
(−∞,−7)∪(−4,−2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(−∞,−7]∪(−4,−2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(−∞,−7]∪[−4,−2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(−∞,−7)∪[−4,−2]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(−∞,−7)∪(−4,−2) (x−2)(x−4)(x−7)(x+2)(x+4)(x+7)>1
(x−2)(x−4)(x−7)(x+2)(x+4)(x+7)−1>0
(x−2)(x−4)(x−7)−(x+2)(x+4)(x+7)(x+2)(x+4)(x+7)>0
⇒−26x2−112(x+2)(x+4)(x+7)>0
⇒−2(13x2+56)(x+2)(x+4)(x+7)>0
⇒(x+2)(x+4)(x+7)<0 ⇒x∈(−∞,−7)∪(−4,−2) Alternative Method : (x−2)(x−4)(x−7)(x+2)(x+4)(x+7)>1 Clearly, the function f(x) does not exists at x=−2,−4,−7 So, the solution set of the inequality does not contain these points. From the options , only option A does not contain these points.