The correct option is A x∈[log2115, log21615)
For log to be defined,
log0.5(2x1516)>0
⇒2x1516<1
⇒2x<1615
By taking log with base 2, we get
⇒x<log21615
⇒x∈(−∞, log21615) ⋯(1)
Given: log2log0.5(2x1516)≤2
⇒log0.5(2x1516)≤4
⇒2x(1516)≥116
⇒2x≥115
By taking log with base 2, we get
⇒x≥log2115
⇒x∈[log2115,∞) ⋯(2)
From (1) and (2), we get
x∈[log2115, log21615)