The correct option is A x∈(−∞,−1)∪(4,∞)
log1/6(x2−3x+2)+1<0
log function is defined when x2−3x+2>0
⇒(x−1)(x−2)>0
⇒x∈(−∞,1)∪(2,∞) ...(1)
Now, −log6(x2−3x+2)+1<0
⇒log6(x2−3x+2)>1
⇒x2−3x+2>6
⇒x2−3x−4>0
⇒(x+1)(x−4)>0
⇒x∈(−∞,−1)∪(4,∞) ...(2)
From (1) and (2),
x∈(−∞,−1)∪(4,∞)