The ratio in which the midpoint of A(0, 6) and B(12, 12) divides the points of trisection of the line AB is
Let the points of trisection of the line segment AB be P(x,y) and Q(h,k)
∴AP=PQ=QB
⇒AP:PB=1:2
We know, by section formula, that the coordinates of the point that divides a line in the ratio m : n is,
((n×x1+m×x2)m+n,((n×y1+m×y2)m+n)
where (x1,y1) and (x2,y2) are the coordinates of the endpoints of the line segment.
⇒x=2(0)+1(12)1+2=0+123=123=4
⇒y=2(6)+1(12)1+2=12+123=243=8
∴P≡(4,8)
⇒AQ:QB=2:1
⇒h=1(0)+2(12)1+2=0+243=243=8
⇒k=1(6)+2(12)1+2=6+243=303=10
∴Q≡(8,10)
Let the midpoint of AB be C(a,b)
∴AC=CB
⇒a=1(0)+1(12)1+1=0+122=122=6
⇒b=1(6)+1(12)1+1=6+122=182=9
∴C≡(6,9)
Let PC : CQ = k : 1
6=8k+4k+1
6(k+1)=(8k+4)
6k−8k=4−6
−2k=−2
k=1
∴ The required ratio is 1 : 1 i.e., the mid point of AB is also the midpoint of PQ.