Using the section formula, if a point (x,y) divides the line joining the points (x1,y1) and (x2,y2) in the ratio m:n, then (x,y)=(mx2+nx1m+n,my2+ny1m+n)
Substituting (x1,y1)=(2,−3) and (x2,y2)=(5,6) in the section formula, we get the point:
(m(5)+n(2)m+n,m(6)+n(−3)m+n)=(5m+2nm+n,6m−3nm+n)
As the point lies on the x - axis, the y co-ordinate of the point =0
⟹6m−3nm+n=0
6m=3n
m:n=3:6=1:2