The ratio of the A.M and G.M of two positive numbers a and b, is m : n. Show that a:b=(m+√m2−n2):(m−√m2−n2).
∴ A.M. of a and b =a+b2
G.M. of a and b =√ab
∴a+b2√ab=mn
By componendo and dividendo, we get
a+b+2√aba+b−2√ab=m+nm−n
⇒(√a+√b)2(√a−√b)2=m+nm−n
⇒√a+√b√a−√b=√m+n√m−n
Again by componendo and dividendo, we have:
√a+√b+√a−√b√a+√b−√a+√b=√m+n+√m−n√m+n−√m−n
⇒2√a2√b=√m+n+√m−n√m+n−√m−n
Squaring both sides,
ab=(√m+n+√m−n)2(√m+n−√m−n)2
⇒ab=m+n+m−n+2√(m+n)(m−n)m+n+m−n−2√(m+n)(m−n)
⇒ab=2m+2√m2−n22m−2√m2−n2
⇒ab=m+√m2−n2m−√m2−n2
Thus,
a:b=(m+√m2−n2):(m−√m2−n2)