Let the two numbers be a and b.
∴A.M=a+b2andG.M=√ab
According to the given condition,
a+b2√ab=mn⇒(a+b)24(ab)=m2n2⇒(a+b)2=4abm2n2⇒(a+b)=2√abmn....(1)
Using this in the identity (a−b)2=(a+b)2−4ab, we obtain
(a−b)2=4abm2n2−4ab=4ab(m2−n2)n2⇒(a−b)=2√ab√m2−n2n...(2)
Adding (1) and (2) we obtain
2a=2√abn(m+√m2+n2)⇒a=√abn(m+√m2+n2)
Substituting the value of a in (1), we obtain
b=2√abnm−√abn(m+√m2+n2)=√abnm−√abn√m2+n2=√abn(m−√m2+n2)∴a:b=ab=√abn(m+√m2+n2)√abn(m−√m2+n2)=(m+√m2+n2)(m−√m2+n2)Thusa:b=(m+√m2+n2):(m−√m2+n2)