wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The ratio of the A.M. and G.M. of two positive numbers a and b, is m:n. Show that a:b=(m+m2n2):(mm2n2)

Open in App
Solution

Let the two numbers be a and b.
A.M=a+b2andG.M=ab
According to the given condition,
a+b2ab=mn(a+b)24(ab)=m2n2(a+b)2=4abm2n2(a+b)=2abmn....(1)
Using this in the identity (ab)2=(a+b)24ab, we obtain
(ab)2=4abm2n24ab=4ab(m2n2)n2(ab)=2abm2n2n...(2)
Adding (1) and (2) we obtain
2a=2abn(m+m2+n2)a=abn(m+m2+n2)
Substituting the value of a in (1), we obtain
b=2abnmabn(m+m2+n2)=abnmabnm2+n2=abn(mm2+n2)a:b=ab=abn(m+m2+n2)abn(mm2+n2)=(m+m2+n2)(mm2+n2)Thusa:b=(m+m2+n2):(mm2+n2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Probability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon