The ratio of the AM and GM of two positive numbers a and b is m : n, show that a:b=[m+√(m2−n2)]:[m−√(m2−n2)].
Given, AMGM=mn
⇒ a+b2√ab=mn
⇒ a+b+2 √aba+b−2 √ab=m+nm−n
[applying componendo and dividendo rule]
⇒ (√a+√b)2(√a−√b)2=m+nm−n
⇒ √a+√b√a−√b=√m+n√m−n
⇒ (√a+√b)+(√a−√b)(√a+√b)−(√a−√b)=√m+n+√m−n√m+n−√m−n
[again applying componendo and dividendo rule]
⇒ 2√a2√b=√m+n+√m−n√m+n−√m−n
On squaring both sides, we get
⇒ ab=(m+n)+(m−n)+2√(m+n)(m−n)(m+n)+(m−n)−2√(m+n)(m−n)
⇒ ab=2m+2√m2−n22m−2√m2−n2
∴ ab=m+√m2−n2m−√m2−n2
Hence proved.