The ratio of the sums of m and n terms of an A.P is m2:n2 . Show that the ratio mthandnth term is (2m−1):(2n−1).
Open in App
Solution
LetAbethefirsttermandDbethecommonratioofanA.Pthen, Given :Sm=m2[2a+(m−1)d] andSn=n2[2a+(n−1)d] Given : SmSn=m2n2 ⇒m2[2a+(m−1)d]n2[2a+(n−1)d]=m2n2⇒2a+(m−1)d2a+(n−1)d=mn ⇒a+(m−12)da+(n−12)d=mn......(1) Letm−12=p−1andn−12=q−1, then , m−1=2p−2andn−1=2q−2