The real part of (1-cosθ+2isinθ-1 is
1(3+5cosθ)
1(5-3cosθ)
1(3-5cosθ)
1(5+3cosθ)
Compute the required value.
Step 1: Simplify the expression
Given : 1-cosθ+2isinθ-1
⇒2sin2θ2+2isinθ-1⇒2sin2θ2+2isinθ2cosθ2-1⇒2sinθ2-1sinθ2+i2cosθ2-1⇒sinθ2-i2cosθ22sinθ2sinθ2+i2cosθ2sinθ2-i2cosθ2⇒sinθ2-i2cosθ22sinθ2sin2θ2+4cos2θ2⇒sinθ2-i2cosθ22sinθ21+3cos2θ2⇒sinθ22sinθ21+3cos2θ2-i2cosθ22sinθ21+3cos2θ2
Step 2: Separate the real part
So real part is,
sinθ22sinθ21+3cos2θ2⇒12×11+31+cosθ2⇒12×12+3+3cosθ2⇒15+3cosθ
Therefore, real part is 15+3cosθ.
Hence option (D) is the correct option.
Find real values of θ for which(4+3isinθ1−2isinθ) is purely real.