The correct option is A e−pi/4 cos(12log 2)
Let z = (1−i)−i. Taking log on both sides,
⇒ log z=−i log(1−i)=−i log √2(cosπ4−i sinπ4)
=−i log(√2e−iπ/4)=−i[12log 2+log e−iπ/4]
i[12 log 2−iπ4]=−i2 log 2−π4
⇒ z=e−π/4e−i/2log2. Taking real part only,
⇒ Re (z)=eπ/4 cos(12 log 2).