The correct option is B e−ysin(x)
Methdo I: Using MILNE THOMSON method
f(z)=u+iv (Analytic)
Where u=e−−ycos(x) (Real part)
Step 1: ∂u∂x=−eysin(x)≈ϕ1(x,y)
Step 2: ϕ1 (x,0)=−sinz
Step 3: ∂u∂y=−ex cos x≈ϕ2 (x,y)
Step 4: ϕ2 (z,0)=−cosz
Step 5: f(z)=∫[ϕ1(z,0)−iϕ2(z,0)]dz+c
=∫(−sinz+icosz)dx+c
=(cosz+isinz)+c
=eiz+c {∵eiθ=cosθ+isinθ}
=ei(x+iy)+c
=eix−y+c=e−y(eix)+c
u+iv=e−y(cosx+isnx)+c
Hence, v=e−ysinx (for any c=0)
Method II:
Using total derivative concept
u=e−ycosx then ∂u∂x=−e−ysinx and ∂u∂y=−e−ycosx
∵v=v(x,y)
dv=(∂v∂x)dx+(∂v∂y)dy
=(−∂u∂y)dx+(∂u∂x)dy (By C-R equation)
=(+e−ycosx)dx+(−e−ysinx)dy
dv=d(e−ysinx)
On integraing, v=e−ysinx+c
If we takec=0 then v=e−ysinx
Method III:
Let f(z)=u+iv
u=e−ycosx
⇒ux=−e−ysinx & uy=−e−ycosx
By C.R. eqns. ux=vy
vy=−e−ysinx
Interating both sides w.r.t y
v=e−ysinx+ϕ(x)
By C.R.eqn.'s
uy=−vy
⇒−e−ycosx=−e−ycos−ϕ′(x)
ϕ′(x)=0
ϕ(x)=C
so. v=e−ysinx+C
Note: We can also use MILNE THOMSON method to find v.