The real roots of the equation cos7x+sin4x=1, in the interval (−π,π) are-
cos7x+sin4x=1
cos7x=1−sin4x=(1−sin2x)(1+sin2x)
cos7x=cos2x(1+sin2x)
cos7(x)−cos2x(2−cos2x)=0
cos2x(cos5x+cos2(x)−2)=0
cos2(x)=0 implies
x=±π2
And
cos5x+cos2x−2=0 implies
cos(x)=1
x=0.
Hence
xϵ{−π2,0,π2}