The real roots of the equations cos7x+sin4x=1 in the interval (−π,π) are ___,_____and_____.
Open in App
Solution
cos7x=1−sin4x =(1−sin2x)(1+sin2x) =cos2x(1+sin2x) ∴cosx=0 or x=π2,−π2, or cos5x=1+sin2x cos5x≤1but1+sin2x≥1 ⇒cos5x=1+sin2x=1 ⇒cosx=1 and sin x =0. [both these imply x =0] Hence, x=−π2,π2and0.