wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The real value of α for which the expression 1-i sin α1+2i sin α is purely real, is

(a) n+1 π2

(b) 2n+1 π2

(c) nπ

(d) none of these where n ∈ N.

Open in App
Solution

Given 1-i sin α1+2i sin α is purely real
i.e 1-i sin α1+2i sin α×1-2i sin α1-2i sin α=1-i sin α-2i sin α+2i2 sin2α1-4i2 sin2α=1-3i sin α-2 sin2 α1+4 sin2 α=1-2 sin2 α1+4 sin2 α+i-3 sin α1+4 sin2 α

Which is given to purely real

-3 sin α1+4 sin2 α=0-3 sin α=0i.e sin α=0i.e α=nπ
Hence, the correct answer is option C.

flag
Suggest Corrections
thumbs-up
12
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Differentiability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon