The correct option is B 2nπ±π2
Let z=1+icosθ1−2icosθ
Now,
⇒z=1+icosθ1−2icosθ×1+2icosθ1+2icosθ
⇒z=1+2icosθ+icosθ+2i2cos2θ12−(2icosθ)2
⇒z=1−2cos2θ+3icosθ1+4cos2θ [∵i2=−1]
As z is a real number, so
⇒Im(z)=0
⇒3cosθ1+4cos2θ=0
⇒cosθ=0 [∵1+4cos2θ>0]
⇒cosθ=cosπ2
⇒θ=2nπ±π2,n∈I
[∵cosα=cosθ⇒α=2nπ±θ,n∈I]
Hence, option (C) is correct.