The correct option is C 2b=−a=±(220−1)1/20,4q=−p=1
Equating the coefficients of x20,
220−a20=1
a20=220−1
Now, put x=12
(a2+b)20+(14+p2+q)10=0
⇒a2=−b and ⇒p2+q=−14
So, the given equation becomes
220(x−12)20−a20(x−12)20=(x2+px+q)10
⇒(x−12)20(220−a20)=(x2+px+q)10
(x−12)20=(x2+px+q)10
(x−12)2=x2+px+q
⇒p=−1,q=14
Hence, 2b=−a=±(220−1)1/20,4q=−p=1