The reflection of the plane ax+by+cz+d=0 in the plane a′x+b′y+c′z+d′=0 is:
Let P(α,β,γ) be an arbitrary point in the plane (i) and Q(p,q,r) be the reflection of the point P in plane (ii).
Locus of Q will be the required reflection of plane (i) in plane (ii). Let L be the mid point of PQ
Then L(p+α2,q+β2,r+γ2)
L lies in plane (ii), so we get a′(p+α2)+b′(q+β2)+c′(r+γ2)+d′=0
⇒a′(p+α)+b′(q+β)+c′(r+γ)+2d′=0⋯(iii)
D.R′s of PQ are (α−p,β−1,γ−r)
Since PQ is perpendicular to plane in equation (iii), the D.R′s of PQ and that of the normal of the plane are parallel. So, we get α−pa′=β−1b′=γ−rc′=k(say)
∴α=p+a′k,β=q+b′k,γ=r+c′k
Putting the values of α,β and γ in equation (iii), we get a′(2p+ka′)+b′(2q+kb′)+c′(2r+kc′)+2d′=0
⇒2(a′p+b′q+c′r+d′)=−k(a′2+b′2+c′2)⋯(iv)
Since P(α,β,γ) lies on plane (i), we get aα+bβ+cγ+d=0
⇒a(p+ka′)+b(q+kb′)+c(r+kc′)+d=0
⇒k=−ap+bq+cr+daa′+bb′+cc′
Now, putting the value of k in equation (iv), we get 2(a′p+b′q+c′r+d′)=(a′2+b′2+c′2)(ap+bq+cr+d)aa′+bb′+cc′
∴ Locus of Q(p,q,r) i.e equation of reflection of plane (i) in plane (ii) is, 2(aa′+bb′+cc′)(a′x+b′y+c′z+d′)=(a′2+b′2+c′2)(ax+by+cz+d)