The correct option is A (5,−8,−4)
Coordinates of any point Q on the given line are (2r+1,−3r−1,8r−10).
So the direction ratios of PQ are 2r,−3r−1−,8r−10.
Now PQ is perpendicular to the given line.
If 2(2r)−3(−3r−1)+8(8r−10)=0
⇒ 77r−77=0 ⇒r=1
Thus the coordinates of Q, the foot of the perpendicular from P on the line are (3,−4,−2).
Let R(a,b,c) be the reflection of P in the given line
then Q is the mid-point of PR
⇒ a+12=3,b2=−4,c2=−2
⇒ a=5,b=−8,c=−4
Hence the coordinate of the required point are (5,−8,−4).