The correct option is A 2 αv3
Given t=αx2+βx
Differenting w.r.t time, we get 1=2αdxdt.x+βdxdt ∴v=dxdt=1β+2αx
Differentiating one more time w.r.t t, we get d2xdt2=(β+2αx).ddt(1)−1.ddt(β+2αx)(β+2αx)2
=−2αv(β+2αx)2=−2αv3
Negative sign represents retardation.