The correct option is C 1a(ad−bc)
Here, p(x)=ax3+bx2+cx+d and factor of ax+b is
ax+b=0
x=−ba
p(−ba)=a(−ba)3+b(−ba)2+c(−ba)+d
p(−ba)=−b3a2+b3a2−bca+d
p(−ba)=−bca+d
p(−ba)=1a(ad−bc)
when ax3+bx2+cx+d is divided by ax+b then remainder is p(−ba)=1a(ad−bc)
Option B is correct.