The remainder when 22003 is divided by 17 is :
We have to express 2 or powers of 2 in terms of 17.We know 24 = 16 = 17 - 1.
So we want write 22003 in the form k (17−1)n
22003 = 8[22000]
22003 = 8[16500]
22003 = 8[(17−1)500]
8[(17−1)500] = 8 [500C0(17)500−500C1(17)499+500C2(17)498...........−500C499(17)1+500C500]
8[(17−1)500] = 8 [500C0(17)500−500C1(17)499+500C2(17)498...........−500C499(17)1+1]
8[(17−1)500] = 8 [500C0(17)500−500C1(17)499+500C2(17)498...........−500C499(17)1+1−1]+8×1
(We added and subtracted 8^* 1)
⇒ 8[(17−1)500] = 8 [500C0(17)500−500C1(17)499+500C2(17)498...........−500C499(17)1]+8×1
8 [500C0(17)500−500C1(17)499+500C2(17)498...........−500C499(17)1] is a multiple of 17.we will write it as 17k.
⇒ 8[(17−1)500] = 17k + 8 × 1