The resultant of two forces P and Q acting at an angle a is equal to (2m+1)√P2+Q2. When the forces act at an angle (90−α), the resultant is (2m−1)√P2+Q2. Then value of tanα is:
Open in App
Solution
Solution
In case I :
∣∣→P+→Q∣∣=√P2+Q2+2Pθcosθ
⇒(2MH)√P2+Q2=√P2+Q2+2PQcosθ
⇒(2M+1)2(P2+Q2)=P2+Q2+2PQcosθ
⇒(4m2+4m)2(PQ)(P2+Q2)=cosθ
In case II
∣∣P2+Q2∣∣=√P2+Q2+2PQsinθ
⇒(2m−1)√P2+Q2=√P2+Q2+2PQsinθ
⇒(2m−1)2(P2+Q2)=P2+Q2+2PQsinθ
⇒(4m2−4m)2(PQ)(P2+Q2)=sinθ
So, tanθ=sinθcosθ=4m2−4m(2PQ)(2PQ)(4m2+4m)(P2+Q2)(P2+Q2)