The root of the equation, (x2+1)2=x(3x2+4x+3), are given by
2−√3
(−1+i√3)2,i=√−1
2+√3
(−1−i√3)2,i=√−1
Given equation is
(x2+1)2=x(3x2+4x+3)
⇒x4−3x3−2x2−3x+1=0
⇒x2(x2−3x−2−3x+1x2)=0
⇒∵x≠0
∴x2+1x2−3(x+1x)−2=0
⇒(x+1x)2−3(x+1x)−4=0
⇒(x+1x−4)(x+1x+1)=0
Or (x2−4x+1)(x2+x+1)=0
∴x=2±√3, −1±i√32