The correct option is B −12,2,−13,3
Given; 6x4−25x3+12x2+25x+6=0
Dividing the equation by x2, we get:
6(x2+1x2)−25(x−1x)+12=0
Let: x−1x=t
⇒x2−1=xt
⇒x2−xt−1=0
Now, this equation should have real roots:
⇒D≥0⇒t2+4≥0, which is true ∀ t∈R
Now, Squaring both sides, we get:
x2+1x2=t2+2
Substituing both we get the above equation as:
6t2−25t+24=0
⇒6t2−9t−16t+24=0
⇒3t(2t−3)−8(2t−3)=0
⇒(3t−8)(2t−3)=0
⇒t=83,32
If t=83, we have
x−1x=83
⇒3(x2−1)=8x
⇒3x2−8x−3=0
⇒3x(x−3)+1(x−3)=0
⇒(x−3)(3x+1)=0
⇒x=−13,3
If t=32, we have
x−1x=32
⇒2(x2−1)=3x
⇒2x2−2−3x=0
⇒2x2−4x+x−2=0
⇒(2x+1)(x−2)=0
⇒x=−12,2
∴ All possible values of x are −12,2,−13,3