The correct option is D 1,b+c−aa+c−b
Given equation is (a+c−b)x2−2cx+(b+c−a)=0
Now B2−4AC
=4c2−4(c+(a−b))(c−(a−b))
=4[c2−c2+(a−b)2]
=4[(a−b)2]
Hence, x=−B±√B2−4AC2A
=2c±√4(a−b)22(a+c−b)
=2c±2(a−b)2(a+c−b)
⇒x=c+a−bc+a−b or x=c+b−ac+a−b
Hence, x=1 or x=c+b−ac+a−b