The roots of the equation a+bx2-15+a-bx2-15=2a, where a2-b=1 are
±2,±3
±4,±14
±4,±5
±5,±20
Explanation for the correct option:
Find the roots of the given equation
Let y=a+b
1y=1a+b=a-ba+ba-b=a-ba2-b=a-b∵a2-b=1
∴yx2-15+1yx2-15=2a
Let yx2-15=t
∴t+1t=2a⇒t2-2at+1=0t=2a±4a2-42=a±a2-1=a±b∵a2-b=1
t=a+b [by taking positive sign]
⇒yx2-15=a+b∵yx2-15=t⇒a+bx2-15=a+b∵a+b=y⇒x2-15=1⇒x2=16⇒x=±4
t=a-b [by taking negative sign]
⇒yx2-15=a-b∵yx2-15=t⇒a-bx2-15=a-b-1∵a-b=1y⇒x2-15=-1⇒x2=14⇒x=±14
Therefore x=±4,±14
Hence, the correct option is B.
2a−15=10 and 10=−15+2a are not the same equations.