The correct option is B ±4,±√14
Given equation, (a+√b)x2−15+(a−√b)x2−15=2a ....(1)
Since, a2−b=1
⇒(a+√b)(a−√b)=1
a+√b=1a−√b
Using this in equation (1),
(1a−√b)x2−15+(a−√b)x2−15=2a
⇒(a−√b)2(x2−15)−2a(a−√b)x2−15+1=0
Put (a−√b)x2−15=t
⇒t2−2at+1=0
⇒t=2a±√4(a2−1)2
⇒t=2a±2√b2
t=a±√b
⇒(a−√b)x2−15=(a−√b)or1a−√b
⇒x2−15=±1
⇒x2=16,14
⇒x=±4,±√14
Hence, option 'B' is correct.