Roots of x2+2(a−3)x+9=0 lie between −6 and 1.
(I) D≥0
⇒4(a−3)2−4⋅9≥0
⇒a∈(−∞,0]∪[6,∞)
(II) −6<−b2a<1
⇒−6<3−a<1
⇒a∈(2,9)
(III) f(−6)>0
⇒36−12(a−3)+9>0
⇒a<274
(IV) f(1)>0
⇒1+2(a−3)+9>0
⇒a>−2
Taking intersection, a∈[6,274)
[a]=6
Now, 2,h1,h2,…,h20,6 are in H.P.
⇒12,1h1,1h2,…,1h20,16 are in A.P.
16=12+21d where d is the common difference of A.P.
⇒d=−163
∴1h9=12+9(−163)=514
⇒h9=145