The correct option is D α,γ,δ are in G.P.
x4+x3+2x−4=0
α+β+γ+δ=−1
Let α+β=0
∴γ+δ=−1
Quadratic factor corresponding to α,β
x2−0.x+p=x2+p
Corresponding to γ,δ
x2+x+q
∴x4+x3+2x−4=(x2+p)(x2+x+q)⇒x4+x3+2x−4=x4+x3+x2(p+q)+px+pq
Comparing the coefficients of x2 and x, we get
p=2, q=−2
So,
⇒(x2+2)(x2+x−2)=0⇒(x−1)(x+2)(x2+2)=0⇒x=1,−2,±i√2
α=1,β=−i√2,γ=i√2,δ=−2∵|α|≤|β|≤|γ|≤|δ|
⇒α,β,δ are in G.P.
⇒α,γ,δ are in G.P.