The correct options are
A −1
B 12+i√32
C −12+i√32
D −1−i√32
z5+z4+z3+z2+z+1=0⇒z6−1z−1=0⇒z≠1&z6=1=cos0+isin0⇒z=(cos0+isin0)16=cos2kπ6+isin2kπ6⇒z=coskπ3+isinkπ3
where k=0,1,2,3,4,5.
For k=0,
z=1 but z≠1
For k=1,
z=cosπ3+isinπ3=1+i√32
For k=2,
z=cos2π3+isin2π3=−1+i√32
For k=3,
z=cos3π3+isin3π3=−1
For k=4,
z=cos4π3+isin4π3=−1−i√32
For k=4,
z=cos5π3+isin5π3=1−i√32
Hence, all the options A,B,C and D are correct.