The correct option is A 8,−5
Given, x+5=2x+10x−6
⇒(x+5)(x−6)=(2x+10)⇒x2−3x−40=0
For the standard form of a quadratic equation ax2 + bx + c = 0, roots are −b±√b2−4ac2a.
Here, a=1,b=−3 and c=−40.
∴ Roots of the quadratic equation are:
x=−(−3)±√32−4×1×(−40)2×1 =3 ±√9 + 1602 =3 ±√1692 =3 ±132⇒x=3 +132 or 3 −132 =162 or −102 =8 or −5
Hence, roots of the equation
x+5=2x+10x−6 are 8,−5.