The roots of (x−a)(x−c)+k(x−b)(x−d)=0 are real and distinct for all real k if
The roots of (x−a)(x−c)+k(x−b)(x−d)=0 are real and distinct for all real k
f(x)=(1+k)x2−(a+c+k(b+d))x+ac+kbd
As D>0 for real roots.
So ,
⇒(a+c+k(b+d))2−4(1+k)(ac+kbd)>0
⇒(b+d)2k2+2(a+c)(b+d)k+(a+c)2−4(bdk2+(ac+bd)k+ac)>0
⇒ (b−d)2k2+(2(a+c)(b+d)−4(ac+bd))k+(a−c)2>0
This true for all k
D<0
(2(a+c)(b+d)−4(ac+bd))2−4((a−c)(b−d))2<0
((a+c)(b+d)−2(ac+bd))2−((a−c)(b−d))2<0
Applying a2−b2=(a−b)(a+b) we get,
⇒ ((a+c)(b+d)−2(ac+bd)+(a−c)(b−d))((a+c)(b+d)−2(ac+bd)−(a−c)(b−d))<0
⇒(ab+ad+bc+cd−2ac−2bd+ab−ad−bc+cd)(ab+ad+bc+cd−2ac−2bd−ab+ad+bc−cd)<0
⇒(ab+cd−ac−bd)(ad+bc−ac−bd)<0
⇒(a−d)(b−c)(a−b)(d−c)<0
⇒a<b<c<d