The scalar product of the vector ^i+^j+^k with a unit vector along the sum of vectors 2^i+4^j−5^k and λ^i+2^j+3^k is equal to one. Find the value of λ.
Let a=^i+^j+^k,b=2^i+4^j−5^k and c=λ^i+2^j+3^k
Now, b+c=2^i+4^i−5^k+λ^i+2^j+3^k=(2+λ)^i+6^j−2^k
∴|b+c|=√(2+λ)2+(6)2+(−2)2=√4+λ2+4λ+36+4=√λ2+4λ+44
The unit vector along (b + c), i.e., b+c|b+c|=(2+λ)^i+6^j−2^k√λ2+4λ+44
⇒1(2+λ)+1(6)+1(−2)√λ2+4λ+44=1⇒(2+λ)+6−2√λ2+4λ+44=1⇒λ+6=√λ2+4λ+44⇒λ2+12λ+36=λ2+4λ+44⇒8λ=8⇒λ=1
Hence, the value ofλ is 1.